Phenols: Preapartion: (i) from diazonium salts of anilines, (ii) from benzene sulphonicacids and

Properties: Acidic nature, formation of phenoxide and reaction with R-X, electrophilic substitution nitration, halogenation and sulphonation. RiemerTiemann reaction, Gattermann-Koch reaction, Azo-coupling reaction, Schotton-Boumannraction, Houben-Hoesch condensation, FeCl₃ reaction.

type of donor

Chemistry of actinides- general features - electronic configuration, oxidation state, actinide contraction, colour and complex formation. Comparison with lanthanides.

Chemistry of Lanthanides: Position in periodic table, Electronic structure, oxidation state, ionic and atomic radii- lanthanide contraction- cause and consequences, anomalous behavior of post

paramagnetism.Colour and spectra, f-f transitions -occurrence and separation - ion exchange

ligands

B.Sc II yr CHEMISTRY SEMESTER WISE SYLLABUS **SEMESTER III** Paper-III **Chemistry - III**

S3-I-2: Symmetry of molecules

Unit-I (Inorganic Chemistry)

lanthanides-complexation-

method, solvent extraction.

S3-I-1: Chemistry of f-block elements:

Symmetry operations and symmetry elements in molecules. Definition of Axis of symmetry types of C_n , Plane of symmetry (σh , σv , σd) Center of symmetry and improper rotational axis of symmetry (S_n) . Explanation with examples.

S3-I-3: Non – aqueous solvents

Classification and characteristics of a solvent. Reactions in liquid ammonia – physical properties, auto-ionisation, examples of ammono acids and ammono bases. Reactions in liquid ammonia precipitation, neutralization, solvolysis, solvation - solutions of metals in ammonia, complex formation, redox reactions. Reactions in HF - autoionisation, reactions in HF - precipitation, acid – base reactions, protonation.

Unit - II (Organic chemistry) 15 h (1 hr/week)

S3-O-1: Alcohols

monula

Dean

Preaparation: 1°, 2° and 3° alchols using Griganard reagent, Ester hydrolysis, Reduction of Carbonyl compounds, carboxylic acids and esters. Physical properties: H-bonding, Boiling point and Solubility. Reactions with Sodium, HX/ZnCl₂ (Lucas reagent), esterification, oxidation with PCC, alk.KMnO₄, acidic dichromates, conc. HNO₃ and Oppenauer oxidation.

Diols: Pinacol - pinacolone rearrangement

(iii) Cumenehydroperoxide method.

10 mars

15 h (1 hr/week)

preferred.

5 h

4 h

6 h

properties-

Magnetic

6 hrs

Page 13

S3-O-2: Ethers and epoxides

Nomenclature, preparation by (a) Williamson's synthesis (b) from alkenes by the action of conc. H_2SO_4 . Physical properties – Absence of Hydrogen bonding, insoluble in water, low boiling point. Chemical properties – inert nature, action of conc. H_2SO_4 and HI.

S3-O-3 Carbonyl compounds

Nomenclature of aliphatic and aromatic carbonyl compounds and isomerism. Praparation of aldehydes & ketones from acid chloride, 1,3-dithianes, nitriles and from carboxylic acids. Special methods of preparing aromatic aldehydes and ketones by (a) Oxidation of arenes (b) Hydrolysis of benzal halides Physical properties – absence of Hydrogen bonding. Keto-enol tautomerism, polarisability of carbonyl groups, reactivity of the carbonyl groups in aldehydes and ketones. Chemical reactivity: Addition of [a] NaHSO₃ (b) HCN (c)RMgX (d) NH₃ (e) RNH₂ (f)NH₂OH(g) PhNHNH₂ (h) 2,4DNP (Schiff bases). Addition of H₂O to form hydrate (unstable), comparison with chloral hydrate (stable), addition of alcohols - hemi acetal and acetal formation. Base catalysed reactions with mechanism- Aldol, Cannizaro reaction, Perkin reaction, Benzoin condensation, haloform reaction, Knoevengeal condensation. Oxidation reactions –KMnO₄ oxidation and auto oxidation, reduction – catalytic hydrogenation, Clemmenson's reduction, Wolf- kishner reduction, MeerweinPondoffVerly reduction, reduction with LAH, NaBH₄. Analysis – 2,4 –DNP test, Tollen's test, Fehlings test, Scihff'stest, haloform test (with equations).

UNIT – III (Physical Chemistry)

S3-P-1: Phase Rule

Statement and meaning of the terms – Phase, Component and degrees of freedom, Gibb's Phase rule, phase equilibria of one component system – water system. Phase equilibria of two-component system – Solid-Liquid equilibria, simple eutectic – Pb-Ag system, desilverisation of lead. Solid solutions – compound with congruent melting point – Mg-Zn system and incongruent melting point – NaCl-H₂O system.

S3-P-2:Colloids& surface chemistry

Definition of colloids.Classification of colloids. Solids in liquids (sols): preparations and properties – (including Kinetic, Optical and Electricalstability of colloids) Protective action. Hardy–Schultz law, Gold number. Liquids in liquids(emulsions): Types of emulsions, preparation and emusifier. Liquids in solids(gels); Classification, preparations and properties, General applications of colloids.

Micelles: Classification of surface active agents. Surfactant action, micellization and micellar interactions, Structure of micelles – spherical and laminar. Critical micellar concentration (CMC).Factors affecting the CMC of surfactants. Counter ion binding to micelles.

Adsorption: Types of adsorption, Factors influencing adsorption. Freundlich adsorption isotherm.Langmuir theory of unilayer adsorption isotherm.Applications.

Dean

Prof. Gade Dayakar, Chairperson, BOS in Chemistry, KU,

15 hr (1h / week)

6 h

9 h

2hrs

7 h

Unit –IV (General Chemistry)

S3-G-1: Nanomaterials:

Nano structured materials – Definition, size, description of graphene, fullerenes, carbonnano tubes. Synthetic techniques, bottom-up-sol-gel method, top-down, electro deposition method.Production of carbon nano tubes – arc discharge, laser vaporization methods. General applications of nano materials.

S3-G-2: Stereochemistry of carbon compounds

Isomerism: Definition of isomers. Classification of isomers: Constitutional and Stereoisomers - definition and examples. Constitutional isomers: chain, functional and positional isomers. Stereoisomers: enantiomers and diastereomers – definitions and examples.

Optical activity:Definition, wave nature of light, plane polarised light, optical rotation and specific rotation, chiral centers. Chiral molecules: definition and criteria - absence of plane, center and S_n axis of symmetry – asymmetric and dissymmetric molecules. Examples of asymmetric molecules (Glyceraldehyde, Lactic acid, Alanine) and disymmetric molecules (trans-1,2-dichlorocyclopropane). Molecules with constitutionally symmetrical chiral carbons (Tartaric Molecules with constitutionally unsymmetrical chiral acid) carbons (2.3 dibromopentane)Number of enantiomers and mesomers - calculation. D, L &, R, S configuration for asymmetric and disymmetric molecules (Allenes, spiro compounds and biphenyls), Cahn-Ingold-Prelog rules.Racemic mixture, Racemisation and Resolution techniques. Geometrical isomerism with reference to alkenes and cyclo alkanes- cis, trans and E, Z configuration.

S3-G-3: Conformational analysis

2 h

Classification of stereoisomers based on energy. Definition and examples of conformational and configurational isomers. Conformational analysis of ethane, n-butane, 1,2-dichloroethane,2-chloroethanol and methylcyclohexane

Referances:

Unit- I

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications 1996.
- 2. Concise Inorganic Chemistry by J.D. Lee 3rdedn.
- 3. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L.Gaus 3rdedn Wiley Publishers 2001.
- 4. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4thedn.
- 5. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press 1989.
- 6. Inorganic Chemistry by Shriver and Atkins 3rdedn Oxford Press 1999.
- 7. Textbook of Inorganic Chemistry by R Gopalan
- 8. College Practical chemistry by V K Ahluwalia, SunithaDhingra and Adarsh Gulati

mone

15 h (1h/week)

10 h

Unit- II

- 1. Text book of organic chemistry by Soni.
- 2. General Organic chemistry by Sachin Kumar Ghosh.
- 3. Text book of organic chemistry by Morrison and Boyd.
- 4. Text book of organic chemistry by Graham Solomons.
- 5. Text book of organic chemistry by BruiceYuranisPowla.
- 6. Text book of organic chemistry by C N pillai

Unit III

- 1. Principles of physical chemistry by Prutton and Marron.
- 2. Text Book of Physical Chemistry by Soni and Dharmahara..
- 3. Text Book of Physical Chemistry by Puri and Sharma.
- 4. Text Book of Physical Chemistry by K. L. Kapoor.
- 5. Colloidal and surface chemistry, M. Satake, Y. Hayashi, Y.Mido, S.A.Iqbal and M.S.sethi
- 6. Material science by Kakani&Kakani

Unit IV

- 1. Text book of organic chemistry by Morrison and Boyd
- 2. Text book of organic chemistry by Graham solomons
- 3. Text book of organic chemistry by Sony
- 4. Text book of organic chemistry by BruiceyuranisPowla
- 5. General Organic chemistry by Sachinkumar Ghosh

Laboratory Course

Paper III- Quantitative Analysis - I

45hrs (3 h / week)

Acid - Base titrations

- 1. Estimation of Carbonate in Washing Soda.
- 2. Estimation of Bicarbonate in Baking Soda.
- 3. Estimation of Carbonate and Bicarbonate in the Mixture.
- 4. Estimation of Alkali content in Antacid using HCl.

Redox Titrations

- 1. Determination of Fe(II) using $K_2Cr_2O_7$
- 2. Determination of Fe(II) using KMnO₄ with sodium oxalate as primary standard.
- 3. Determination of Cu(II) using $Na_2S_2O_3$ with $K_2Cr_2O_7$ as primary standard

mome

References:

Unit- I

- 1. Principles of Inorganic Chemistry by Puri, Sharma and Kalia Vishal Publications
- 2. 1996.
- 3. Concise Inorganic Chemistry by J.D. Lee 3rdedn.
- 4. Basic Inorganic Chemistry by F.A.Cotton, G.Wilkinson and Paul.L.Gaus 3rdedn Wiley Publishers 2001.
- 5. Inorganic Chemistry Principles of structure and reactivity by James E.Huhey, E.A. Keiter and R.L. Keiter 4thedn.
- 6. Chemistry of the elements by N.N.Greenwood and A. Earnshaw Pergamon Press 1989.
- 7. Inorganic Chemistry by Shriver and Atkins 3rdedn Oxford Press 1999.
- 8. Textbook of Inorganic Chemistry by R Gopalan

Unit- II

- 1. Text book of organic chemistry by Soni.
- 2. General Organic chemistry by Sachin Kumar Ghosh.
- 3. Text book of organic chemistry by Morrison and Boyd.
- 4. Text book of organic chemistry by Graham Solomons.
- 5. Text book of organic chemistry by BruiceYuranisPowla.
- 6. Text book of organic chemistry by C N pillai

Unit III

- 1. Principles of physical chemistry by Prutton and Marron.
- 2. Text Book of Physical Chemistry by Soni and Dharmahara..
- 3. Text Book of Physical Chemistry by Puri and Sharma.
- 4. Text Book of Physical Chemistry by K. L. Kapoor.
- 5. Physical Chemistry through problems by S.K. Dogra.
- 6. Text Book of Physical Chemistry by R.P. Verma.
- 7. Elements of Physical Chemistry byLewisGlasstone.
- 8. Industrial Electrochemistry, D. Pletcher, Chapman & Hall

Unit IV

- 1. Text book of organic chemistry by Morrison and Boyd
- 2. Text book of organic chemistry by Graham solomons
- 3. Fundamentals of organic synthesis and retrosynthetic analysis
- 4. by Ratna Kumar Kar
- 5. Organic synthesis by Dr. Jagadamba Singh and Dr. L.D.S. Yadav
- 6. Stereochemistry of organic compounds by D. Nasipuri
- 7. Organic chemistry by Clayden, Greeves, Warren and Wothers
- 8. Fundamentals of Asymmetric Synthesis by G. L. David Krupadanam

mm

18 mgar

Laboratory Course

Paper IV- Quantitative Analysis - II

45hrs (3h/ week))

- 1. Conductometry titrations:
 - i) Strong acid Vs Strong base;
 - ii) Weak acid Vs Strong base.
- 2. Potentiometry titration:
 - i) Strong acid Vs Strong base;
 - ii) Weak acid Vs Strong base.
- 3. Estimation of Nickel by back titration (Standard MgSO₄ solution will be given)
- 4. Estimation of Barium as Barium Sulphate

Dean

